Structural Equation Modelling

Lecture 4: Bayesian Structural Equation Modelling

Julius Pfadt



Recap

Stress

* Last week: (Frequentist) SEM
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e Today: Bayesian SEM

Resources



Introduction

Interest:

* Parameter estimates: loadings, residual
variances, latent regressions, latent
variances, latent means

* How well does the hypothesized model
represent the data?

Differences to classical:
* Fitting the model
 Model fit is somewhat different
 |dentification

* Multiple models should be
considered simultaneously

LR




Outline

* Introduction

e Parameter estimation

* Basics
* MCMC sampling
* Small variance priors

* Model fit and comparison
* Multi-model inference

* Practical issues



Parameter estimation

* A parameter is a variable with a
distribution that we want to
approximate, the posterior

* The posterior distribution:

* probability of possible parameter values
after observing the data

* Which parameter values are more likely
than others

* 95% interval contains the parameter of
interest with given probability

* What parameter value is the most likely
(point estimate: mean or median)
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Parameter estimation

The posterior distribution of a parameter is proportional to
p(@ly) < p(0) - p(¥16)
With:
6 as the parameter vector
y as the data
p(6|y) as the posterior probability of the parameter given the data
p(6) as the prior probability of the parameter

p(y|0) as the likelihood of the data given the parameter



Prior and posterior as probability distributions

* Probability as the mass under the
density curve (integral)

- Posterior

* Likelihood changes the prior belief prior
towards posterior belief Likelihood

 Posterior as the “compromise”
between prior and likelihood




Priors in a SEM
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Posterior estimation

If we were to write the full joint posterior of all parameters:
p(A,B,%,0,n|y) «x p(A,B,¥,0,n) p(y|A,B,¥,0,n)

* An analytic solution to this becomes almost impossible

* Markov-chain Monte Carlo (MCMC) sampling allows to approximate the posterior by
sampling from it

* Using software such as JAGS and Stan we could define the priors and the likelihood in the
respective programming language and have the built-in MCMC sampling take care of the
rest

* But: R-package blavaan does this <o

* We only need to:

* Specify a model in lavaan-syntax

* Be aware of what we are doing:
* MCMC sampling needs to be checked
* Parameters are no ML point estimates anymore



MCMC sampling

* Many iterations (samples) to accurately represent the target
distribution

* Multiple chains to make sure if the process always leads to the same
target and is independent of the starting values

* Burn-in (warm-up) to throw away early samples that are usually not
very representative of the target and are more related to the starting
value than to the target



> library(blavaan)

Loading required package: Rcpp

This is blavaan 0.5-4

On multicore systems, we suggest use of future::plan("multicore") or
future: :plan("multisession") for faster post-MCMC computations.

> library(lavaan)

This is lavaan 0.6-17

lavaan is FREE software! Please report any bugs.

> future::plan("multisession")

> options(mc.cores = parallel::detectCores())

model <- " ‘f”///”’//”//

-

f_leader =~ HealthAwareness + Workload + Reward + Fairness + ValueFit

f_resources =~ OverallRecovery + LeisureBreaks + WorkRelatedResources + PsychosocialResources

f_stress =~ SocialEmotionalStress + PerformanceRelatedStress
f_burnout =~ EmotionalExhaustion + Cynicism

f_stress ~ f_leader + f_resources
f_resources ~ f_leader

>
+
+
+
+
+
+ f_burnout ~ f_stress + f_resources
+
”
+
+
>

blav_fit <- bsem(model, dtFull, seed = 11)
starting worker pid=26069 on localhost:11188 at 22:50:18.309
starting worker pid=26082 on localhost:11188 at 22:50:18.377
starting worker pid=26095 on localhost:11188 at 22:50:18.447

SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 1).

Define the model as usual

Chain 1:

Chain 1: Gradient evaluation took 0.000246 seconds

Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.46 seconds.
Chain 1: Adjust your expectations accordingly!

Chain 1:

Chain 1:

Chain 1: Iteration: 1/ 1500 [ 0%] (Warmup)

SAMPLING FOR MODEL 'stanmarg' NOW (CHAIN 2).

Chain 2:

Chain 2: Gradient evaluation took 0.000226 seconds

Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 2.26 seconds.
Chain 2: Adjust your expectations accordingly!

Chain

2:

Call the package and use parallel
computing, the chains can be sampled

in pa rallel (these commands are OS dependent,
Windows is probably different)

Health
promoting
leadership

Resources

- Set a seed for reproducibility

Gives us information about the ongoing
/ sampling



> summary(blav_fit, standardized = TRUE)

blavaan 0.5.3.1230 ended normally after 1000 iterations

Estimator BAYES
Optimization method MCMC
Number of model parameters 31
Number of observations 491
Statistic MarglLogLik
Value -6788.737
Parameter Estimates:
Latent Variables:
Estimate Post.SD pi.lower pi.upper

f_leader =~
HealthAwarenss 1.000
Workload 0.989 0.039 0.916
Reward 1.098 0.036 1.030
Fairness 1.119 0.038 1.048
ValueFit 1.097 0.038 1.024
f_resources =~
OverallRecovry 1.000
LeisureBreaks 0.815 0.054 0.710
WorkReltdRsrcs 0.969 0.055 0.864
PsychosclRsrcs 0.848 0.055 0.742
f_stress =~

SoclEmtnlStrss 1.000

PrfrmncR1tdStr 1.052 0.043 0.966
f_burnout =~

EmotionlExhstn 1.000

Cynicism 0.842 0.053 0.740
Regressions:
Estimate Post.SD pi.lower
f_burnout ~
f_stress 0.730 0.054 0.627
f_resources -0.252 0.053 -0.357
f_stress ~
f_leader -0.006 0.072 -0.144
f_resources -0.600 0.084 -0.765
f_resources ~
f_leader 0.680 0.042 0.597
Variances:
Estimate Post.SD pi.lower
.HealthAwarenss 0.273 0.020 0.237
.Workload 0.259 0.019 0.224
.Reward 0.136 0.012 0.115

.070
.173
.197
.175

e

S

.923
.080
0.955

[y

1.136

0.949

pi.upper

0.836
-0.151

0.139
-0.435

0.765

pi.upper
0.312
0.298
0.161

0.

Std.lv
.873
.959

.977
.958

[SISISISTR S

.814
.663
.789
.691

(SRS IS

S

.878
0.924

0.898

0.757

Std.1lv

0.714
-0.228

-0.006
-0.556

0.730

Std.1lv
0.273
0.259
0.136

Marginal likelihood and PPP: Look at

PPP 4/// .
000 this later

—

«—  of10

Std.all Rhat Prior
0.858

normal(@,10)

0.933 N normal(@,10)
0.938 1.000 normat (o
0.919 1.000 normal(@,10)
0.813

0.662 1.000 normal(@,10)
0.786 1.000 normal(@,10)
0.683 1.001 normal(@,10)
0.873

0.919 1.000 normal(@,10)
0.879

0.733 1.000 normal(@,10)

Std.all Rhat Prior
0.714 0.999 normal(@,10)
-0.228 0.999 normal(@,10)
-0.006 1.000 normal(@,10)
-0.556 1.001 normal(@,10)
0.730 1.000 normal(@,10)
Std.all Rhat Prior

0.264 1.000 gamma(l,.5)[sd]
0.258 1.000 gamma(l,.5)[sd]
0.129 0.999 gamma(1, .5)[sd]

Rhat: next slide

A normal prior with mean of 0 and SD

Estimate is the mean of the posterior

posterior 95% interval lower and

for the parameter, then Posterior SD,

0.000
0.000

0.901
0.000

upper
For comparison: Frequentist results:
Regressions:
Estimate Std.Err z-value P(Glzl)

f_burnout ~

f_stress 0.730 0.050 14.516

f_resources -0.249 0.051 -4.879
f_stress ~

f_leader -0.009 0.070 -0.124

f_resources -0.594 0.084 -7.104
f_resources ~

f_leader 0.680 0.044 15.434

0.000

Std.1lv

0.716
-0.227

-0.009
-0.554

0.729

Std.all

0.716
-0.227

-0.009
-0.554

0.729



Convergence diagnhostics

Does the MCMC sample properly approximate the target distribution, aka,
the posterior?

e R-hat:
* Similarity of the chains
* Should be smaller than 1.01 and close to 1.0

 Effective sample size (ESS, neff):
* Because of autocorrelation MCMC samples not independent
* ESS is the number of independent sample draws
* |deally close to the number of samples
* Thinning can help: Take only every, e.g., 2"9, 4t or 10% value of a chain

* Traceplots: visualize the chains
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The traceplots look good: hairy
caterpillar

> blavInspect(blav_fit, what =

"rhat")
f_leader=~Workload
1.0004983
f_leader=~Reward
1.0008243
f_leader=~Fairness
1.0005618
f_leader=~ValueFit
1.0008286
f_resources=~LeisureBreaks
1.0005187
f_resources=~WorkRelatedResources
0.9998543
f_resources=~PsychosocialResources
0.9992834
f_stress=~PerformanceRelatedStress
1.0010401
f_burnout=~Cynicism
0.9998085
HealthAwareness~~HealthAwareness
1.0001440
Workload~~Workload
1.0003352
Reward~~Reward
1.0005263
Fairness~~Fairness
1.0000491
ValueFit~~ValueFit
0.9993236
OverallRecovery~~0OverallRecovery
0.9997663
LeisureBreaks~~LeisureBreaks
0.9995578
WorkRelatedResources~~WorkRelatedResources

R-hat values are within the “good”
range

> blavInspect(blav_fit, what = "neff")
f_leader=~Workload
2222 .686
f_leader=~Reward
1915.312
f_leader=~Fairness
1892.717
f_leader=~ValueFit
2050.289
f_resources=~LeisureBreaks
3409.622
f_resources=~NorkRelatedResources
3215.196
f_resources=~PsychosocialResources
3346.523
f_stress=~PerformanceRelatedStress
2894 .546
f_burnout=~Cynicism
3030.250
HealthAwareness~~HealthAwareness
4365.089
Workload~~Workload
4230.501
Reward~~Reward
4738.278
Fairness~~Fairness
4364.824
ValueFit~~ValueFit
4869.630
OverallRecovery~~0OverallRecovery
3110.338

ESS is good



Priors and sample size

* Explicit benefit of BSEM to work with small samples:
* Large sample properties of ML are not needed: asymptotical normality
e Convergence is not needed
* Prior knowledge can be incorporated

* With large sample sizes, prior does rarely matter: the likelihood will
dominate (the prior is “overwhelmed”)

* With smaller samples it can make sense to think a bit longer about
the prior, look for prior knowledge

* However: less data, less information



> mydp <- dpriors(beta="normal(l,2)")

> blav_fit_pri <- bsem(model, dtFull, seed = 11, dp = mydp)

Regressions:

f_burnout ~
f_stress
f_resources

f_stress ~
f_leader
f_resources

f_resources ~
f_leader

Estimate Post.SD pi.lower pi.upper

0.730
-0.253

-0.008
-9.598

0.681

0.056
0.056

0.074
0.086

0.044

0.621
-0.362

-0.150
-0.769

@.597

0.842
-0.146

0.136
-0.432

0.769

Std.lv

0.713
-0.229

-0.008
-0.553

0.730

Std.all

0.713
-0.229

-0.008
-0.553

0.730

Rhat

1.000
1.001

1.000
1.000

1.000

Prior

normal(l,2)
normal(l,2)

normal(l,2)
normal(l,2)

normal(l,2)

Results barely change



Samples and plots the

blav_fit_only <- bsem(model, dtFull, prisamp = TRUE) A/ priors plot(blav_fit, pars = 1:4, plot.type = "dens")

plot(blav_fit_only, pars = 1:4, plot.type = "dens™) PIOtS the posterior

f_leader=~Reward f_leader=~Workload f_leader=~Reward

f_leader=~Workload

0 0 ' ¥ < 095 1.00 { i E E 110
f_leader=~Fairness f_leader=~ValueFit f_leader=~Fairess f_leader=~ValueFit




|dentification and small-variance priors

 Classical identification: Match between data provided information and to
be estimated parameters

* |In the Bayesian framework a classically unidentified model can be
identified

* Instead of relying on the data to provide the information to estimate
unidentified parameters, we provide the information ourselves in the form
of priors

* This allows us to implement small variance priors or approximate inequality
constraints
* Improves model fit
e Helps with modification
e But: May conceal important misspecifications



+ + + 4+ + + + 4+ + 4+ + +V

model_adjusted <-
f_leader =~ HealthAwareness + Workload + Reward + Fairness + ValueFit

f_resources =~ OverallRecovery + LeisureBreaks + WorkRelatedResources + PsychosocialResources
f_stress =~ SocialEmotionalStress + PerformanceRelatedStress

f_burnout =~ EmotionalExhaustion + Cynicism

f_burnout ~ f_stress + f_resources
f_stress ~ f_leader + f_resources
f_resources ~ f_leader ‘//////////////// Add a small variance prior
# small variance prior on a crossloading

f_leader =~ prior("normal(@, 0.08)")*0OverallRecovery



Outline

* Introduction

e Parameter estimation

* Basics
* MCMC sampling
* Small variance priors

* Model fit and comparison
* Multi-model inference

* Practical issues



Model fit

* In general, the idea is:
 How well does the model implied covariance matrix reproduce the data
covariance matrix
* Single model fit:
* BRMSEA, BCFI, BTLI
e PPC: posterior predictive (model) checking

* Posterior predictive p-value (PPP)
* Model comparison:

* Information criteria: DIC, WAIC, LOOIC
* Bayes factors



Model fit — the classics

* The fit function from maximum likelihood estimation
F = log(|Z]) + trace(SZ~1) — log(IS]) — k

can be seen as a deviance measure for the model implied covariance and the data
covariance matrix

* We need the F value in the calculation of RMSEA, CFl, and TLI;

* Posterior sample of implied covariance matrices
-> posterior sample of F-values
-> posterior sample of RMSEA, CFl, and TLI: BRMSEA, BCFI, BTLI

* We also need the model complexity
* Model complexity used to be number of parameters p

* Because of the priors the model complexity is not equal to p in the Bayesian
framework, it is an estimated quantity



model_null <-
HealthAwareness ~~ HealthAwareness

Workload ~~ Workload

Control ~~ Control

Reward ~~ Reward For calculation of CFl and TLI we need the null (baseline)
Community ~~ Community

Fairness ~~ Fairness model

ValueFit ~~ ValueFit We already needed that in the frequentist SEM, but
OverallRecovery ~~ OverallRecovery

LeisureBreaks ~~ LeisureBreaks Iavaan d|d that under the hOOd
WorkRelatedResources ~~ WorkRelatedResources

PsychosocialResources ~~ PsychosocialResources

SocialEmotionalStress ~~ SocialEmotionalStress

PerformanceRelatedStress ~~ PerformanceRelatedStress

LossOfMeaning ~~ LossOfMeaning

EmotionalExhaustion ~~ EmotionalExhaustion

Cynicism ~~ Cynicism

blav_fit_null <- bsem(model = model_null, data = dtFull)

V+ + 4+ + + 4+ 4+ ++ 4+ + ++ + + + 4+ V

> blavFitIndices(blav_fit, baseline.model = blav_fit_null, fit.measures = c("BRMSEA", "BCFI", "BTLI"))
Posterior mean (EAP) of devm-based fit indices:

BRMSEA BCFI  BTLI
0.116 0.949 0.936



> summary(blav_fit, standardized = TRUE)
blavaan 0.5.3.1230 ended normally after 1000 iterations

Estimator BAYES

Optimization method MCMC
Number of model parameters 44

Number of observations 491

Statistic MargLoglLik PPP
Value -6878.963 0.000

* Posterior predictive p-value

* Compare the discrepancy of:

» Posterior of model implied covariance matrices and observed covariance
matrix

* Simulated data from the posterior covariance matrices and and the model
implied covariance matrices (chance discrepancy, sampling distribution, a
“good” fit discrepancy)

* Does the model’s discrepancy differ significantly from the discrepancy
expected by chance?

* Should be 0.5, the smaller the worse



Information criteria

* Deviance information criterion (DIC)
* Point estimate of the deviance of the mean model implied covariance matrix

* Widely applicable information criterion (WAIC)
* The deviance for each person for each posterior sample

* Leave-one-out cross validation information criterion (LOOIC):

* Deviance between the model trained for N-1 data and the remaining one
observation as the test data

* N-times

e for MCMC of SEM computationally very expensive

. App)roximation obtained with importance sampling (blavaan does that for
you



> model_adjusted <- '

+ f_leader =~ HealthAwareness + Workload + Reward + Fairness + ValueFit

+ f_resources =~ OverallRecovery + LeisureBreaks + WorkRelatedResources + PsychosocialResources
+ f_stress =~ SocialEmotionalStress + PerformanceRelatedStress

+ f_burnout =~ EmotionalExhaustion + Cynicism

: . Fit a model with an additional residual covariance
+ f_burnout ~ f_stress + f_resources

+ f_stress ~ f_leader + f_resources

+ f_resources ~ f_leader

+

+ # residual covariance

+ WorkRelatedResources ~~ Cynicism
'

+
> blav_fit_adjusted <- bsem(model_adjusted, dtFull)

> fitmeasures(blav_fit)
npar logl ppp bic dic p_dic waic p_waic se_waic looic p_loo se_loo margloglik
31.000 -6650.763 0.000 13493.552 13363.379 30.927 13365.286 32.509 129.768 13365.364 32.548 129.771 -6788.655
Warning message:

. ‘ . . Ignore the warning
5 (1.0%) p_waic estimates greater than 0.4. We recommend trying loo instead.

> fitmeasures(blav_fit_adjusted)
npar logl ppp bic dic p_dic waic p_waic se_waic looic p_loo se_loo margloglik
32.000 -6615.039 0.000 13428.300 13294.149 32.035 13296.331 33.827 128.700 13296.429 33.876 128.704 NA
Warning message:

6 (1.2%) p_waic estimates greater than @.4. We recommend trying loo instead.

> blavCompare(blav_fit, blav_fit_adjusted)

WAIC estimates:
objectl: 13365.286
object2: 13296.331

ELPD difference & SE: / The various information criteria show lower values
-34.478 8.453 . H
o for the adjusted model, we consider BF later

objectl: 13365.363
object2: 13296.43

ELPD difference & SE:
-34.466 8.453

Laplace approximation to the log-Bayes factor
(experimental; positive values favor objectl): NA



Frequentist model comparison

* Compare two models

* HO: the models are equal

* We can only reject the HO

But

* How much more likely is the complex model than the simple model?
* What is the probability of each model given the data?

* Within the space of possible models, which is the most likely?



Bayes factor

* Comparison of two models M; and M, by comparing their marginal
likelihoods (the probability of the data under the model)

* In parameter estimation: p(y|M) = p(y)
* The ratio of the likelihoods is the Bayes factor:

p(y|M;)
p(y|M,)

BF12 —

* How much more likely are the data under M; than under M, ?



Bayes factor

e Can quantify evidence in favour of M; but
also in favour of M,

* For example:

* BF,, = 3 ->the data are three times as
likely under M; than under M,

* How much more likely are the data under M,
than under Ml? BF21 = 1/BF12

* For SEM the marginal likelihoods are not
easy to estimate:

e Approximations exist: Laplace
approximation, BIC transformation for the BF

* You could use sampling methods such as
importance sampling, path sampling,
bridgesampling

TABLE 15.1: The Bayes factor scale as proposed by Jeffreys (1939). This scale should not be regarded

BF;,

> 100
30 — 100
10 — 30
3-10

1-3

==

as a hard and fast rule.

Interpretation

Extreme evidence for M.
Very strong evidence for M.
Strong evidence for M.
Moderate evidence for M.
Anecdotal evidence for M.
No evidence.

Anecdotal evidence for M.
Moderate evidence for M,.
Strong evidence for M,.
Very strong evidence for M,.

Extreme evidence for M,.

https://vasishth.github.io/bayescogsci/book/ch-bf.html



model_adjusted <-
f_leader =~ HealthAwareness + Workload + Reward + Fairness + ValueFit

f_resources =~ OverallRecovery + LeisureBreaks + WorkRelatedResources + PsychosocialResources
f_stress =~ SocialEmotionalStress + PerformanceRelatedStress

f_burnout ~ f_stress + f_resources
f_stress ~ f_leader + f_resources
f_resources ~ f_leader

# crossloading
f_leader =~ OverallRecovery

V 4+ + + 4+ + 4+ + 4+ + + + +V

# logbfl2

>
>
>
>
> mlll - ml12 <

blav_fit_adjusted <- bsem(model_adjusted, dtFull)

mlll <- fitmeasures(blav_fit, "margloglik™)
mll2 <- fitmeasures(blav_fit_adjusted,

f_burnout =~ EmotionalExhaustion + Cynicism

We specify a model with a
crossloading

Obtain the marginal log likelihood,

the marginal likelihood itself would be a number so small R
would just say 0

R

We continue with the log values, then
the ratio becomes a difference:

"margloglik™)

margloglik
-25.784

> # logbf21

> mll2 - mlll

margloglik
25.784

> blavCompare(blav_fit, blav_fit_adjusted)

WAIC estimates:
objectl: 13365.195
object2: 13300.147

ELPD difference & SE:
-32.524 7.800

LOO estimates:
objectl: 13365.266
object2: 13300.245

ELPD difference & SE:
-32.511 7.800

Laplace approximation to the log-Bayes factor
(experimental; positive values favor objectl):

obtain the logBF12, which is very small,
so lots of evidence against M1

The inverse, so logBF21 is very large, so
lots of evidence for M2

-25.784
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Bayesian model averaging (BMA)

* With BFs we are still comparing one model against another,
eventually settling on one “good” model which we base all inferences
on

* What if we estimated the posterior model probability (PMP) of each
possible model?

* We could use the PMP as weights for our parameter estimates



BMA

* Lets say we have 4 candidate models
* What is the posterior model probability of M1?

p(My) -p(y|M,)
Y- p(y|M;)p(M;)

p(Myly) =

* In practice we often choose a uniform prior for the models, that is, all
models are equally likely a-priori, so p(M;) = .25



Candidate model

* Choosing candidate models can be hard if the number of possible models is
large, let’s only look at the regressions for now:

M1 M2 M3 M4

Stress Stress

Health
promoting
leadership

Health
promoting
leadership

Health
promoting
leadership

Health
promoting
leadership

Resources Resources Resources Resources

And many more... but let’s assume we define only these four as candidate models



11, orthogonal = TRUE)

> fitl <- bsem(model_1, dtFull, seed
We run each model, orthogonal

> fit2 <- bsem(model_2, dtFull, seed = 11, orthogonal = TRUE) <
> fit3 <- bsem(model_3, dtFull, seed = 11, orthogonal = TRUE) means we don’t estimate the
fitd <- 1 Full =11 h 1 = TRUE H 1
> fith <= bsen(model -4, dtfull, seed = 11, orthogonal = TRUE) correlations among latent variables

11 < fitmeasuresCFitl, “margloglik' Extract the log marginal likelihood
ml2 <- fitmeasures(fit2, "margloglik™) 4r——”""———_-_-——————~—~—~—~_~——~_~—-_~——~—
ml3 <- fitmeasures(fit3, "margloglik™")
ml4 <- fitmeasures(fit4, "margloglik")
mll
margloglik
-6910.153
> ml2

margloglik ..
-6783.666 This is a workaround to be able to

;ar:;foguk work with the tiny numbers
produced by exp()

V V.V V V

-6788.619
> ml4
margloglik
-6787.273

# calculate the posterior model probabilities,
# so we can just leave out p(M)

e <- Brobdingnag::as.brob(exp(1))
logml <- c(mll, ml2, ml3, ml4) .
post_prob <- as.numeric(eAlogml / sum(eAlogml)) MOdel 2 haS the hlghest PMP
> post_prob

[1] 0.0000000000000000000000000000000000000000000000000000001129

[2] 0.9669443080874137175229066087922547012567520141601562500000

[3] 0.0068276451766074155655394939401503506815060973167419433594

[4] 0.0262280467359279449712783360837420332245528697967529296875

Sume equal prior probability for each model

That’s the formula for the PMP

V V V V YV



BMA

With the PMPs we can:

* Estimate the posterior inclusion probability of the parameter
* Sum the posterior model probabilities that include the parameter

e Estimate a model-averaged posterior distribution for a parameter:
* Draw a model based on the PMPs
* Draw a value for the parameter from its posterior under this model
* Repeat many times
* Doing this for only the models that include the parameter answers the
guestion, assuming the effect is present how strong is it?

* Much more: Inclusion BF, Exclusion BF
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Practical Issues for BSEM (and BMA)

* The marginal likelihood approximation is not very stable for complex
models or small samples

* The priors are important for BFs and BMA
* Reducing the number of possible candidate models is not straightforward

 Comparing certain models in SEM in a BMA framework is debatable: For
example, the latent variable(s) ing one-fgctor and two-factor model have a
different meaning -> comparing @ and @?

* blavaan allows a lot of models, but not the same functionality as lavaan

* |[n general, lots of models do not fit well, BSEM cannot help, well calibrated
test instruments and good theory are key



Last slide

Good luck with the final assignment and hopefully you can enjoy the
free time after &



