
Structural Equation Modelling
Lecture 4: Bayesian Structural Equation Modelling

Julius Pfadt



Recap

• Last week: (Frequentist) SEM
• Today: Bayesian SEM Health 

promoting 
leadership

Resources

Stress

Burnout



Introduction 

Interest:
• Parameter estimates: loadings, residual 

variances, latent regressions, latent 
variances, latent means

• How well does the hypothesized model 
represent the data?

Differences to classical:
• Fitting the model 
• Model fit is somewhat different
• Identification
• Multiple models should be 

considered simultaneously
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Outline

• Introduction
• Parameter estimation
• Basics
• MCMC sampling
• Small variance priors

• Model fit and comparison
• Multi-model inference
• Practical issues
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Parameter estimation

• A parameter is a variable with a 
distribution that we want to 
approximate, the posterior
• The posterior distribution:
• probability of possible parameter values 

after observing the data
• Which parameter values are more likely 

than others
• 95% interval contains the parameter of 

interest with given probability
• What parameter value is the most likely 

(point estimate: mean or median)



Parameter estimation

The posterior distribution of a parameter is proportional to
𝑝 𝜃 𝑦 ∝ 𝑝 𝜃 % 𝑝(𝑦|𝜃)

With:
𝜃 as the parameter vector
𝑦 as the data
𝑝(𝜃|𝑦) as the posterior probability of the parameter given the data
𝑝(𝜃) as the prior probability of the parameter
𝑝 𝑦 𝜃  as the likelihood of the data given the parameter



Prior and posterior as probability distributions

• Probability as the mass under the 
density curve (integral)
• Likelihood changes the prior belief 

towards posterior belief
• Posterior as the “compromise” 

between prior and likelihood

Posterior
Prior
Likelihood



Priors in a SEM
• Prior captures belief about plausible parameter 

values before seeing the data

• Informative vs. non-informative?

The parameters:

𝜦: loadings

𝜝: regressions

𝜳: variances and covariances of the latent variables

𝜣:	variances and  covariances of the observed
residuals

𝜼: latent factor scores
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Posterior estimation

• If we were to write the full joint posterior of all parameters:
𝑝 𝜦,𝜝,𝜳,𝜣, 𝜼 𝒚 ∝ 	𝑝 𝚲, 𝚩,𝚿,𝚯, 𝜼 	𝑝(𝒚|𝜦, 𝜝,𝜳,𝜣, 𝜼)

• An analytic solution to this becomes almost impossible
• Markov-chain Monte Carlo (MCMC) sampling allows to approximate the posterior by 

sampling from it
• Using software such as JAGS and Stan we could define the priors and the likelihood in the 

respective programming language and have the built-in MCMC sampling take care of the 
rest

• But: R-package blavaan does this 🤩
• We only need to:

• Specify a model in lavaan-syntax
• Be aware of what we are doing: 

• MCMC sampling needs to be checked
• Parameters are no ML point estimates anymore



MCMC sampling

• Many iterations (samples) to accurately represent the target 
distribution
• Multiple chains to make sure if the process always leads to the same 

target and is independent of the starting values
• Burn-in (warm-up) to throw away early samples that are usually not 

very representative of the target and are more related to the starting 
value than to the target
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Call the package and use parallel 
computing, the chains can be sampled 
in parallel (these commands are OS dependent, 
Windows is probably different)

Define the model as usual

Gives us information about the ongoing 
sampling

Set a seed for reproducibility



Marginal likelihood and PPP: Look at 
this later

A normal prior with mean of 0 and SD 
of 10

Rhat: next slide

For comparison: Frequentist results:

Estimate is the mean of the posterior 
for the parameter, then Posterior SD, 
posterior 95%  interval lower and 
upper



Convergence diagnostics

Does the MCMC sample properly approximate the target distribution, aka, 
the posterior?
• R-hat: 

• Similarity of the chains
• Should be smaller than 1.01 and close to 1.0

• Effective sample size (ESS, neff): 
• Because of autocorrelation MCMC samples not independent
• ESS is the number of independent sample draws 
• Ideally close to the number of samples
• Thinning can help: Take only every, e.g., 2nd, 4th, or 10th value of a chain

• Traceplots: visualize the chains



The traceplots look good: hairy 
caterpillar

R-hat values are within the “good” 
range

ESS is good



Priors and sample size

• Explicit benefit of BSEM to work with small samples: 
• Large sample properties of ML are not needed: asymptotical normality
• Convergence is not needed
• Prior knowledge can be incorporated

• With large sample sizes, prior does rarely matter: the likelihood will 
dominate (the prior is “overwhelmed”)
• With smaller samples it can make sense to think a bit longer about 

the prior, look for prior knowledge
• However: less data, less information



Results barely change



Samples and plots the 
priors

Plots the posterior



Identification and small-variance priors

• Classical identification: Match between data provided information and to 
be estimated parameters
• In the Bayesian framework a classically unidentified model can be 

identified
• Instead of relying on the data to provide the information to estimate 

unidentified parameters, we provide the information ourselves in the form 
of priors
• This allows us to implement small variance priors or approximate inequality 

constraints
• Improves model fit
• Helps with modification
• But: May conceal important misspecifications



Add a small variance prior



Outline

• Introduction
• Parameter estimation
• Basics
• MCMC sampling
• Small variance priors

• Model fit and comparison
• Multi-model inference
• Practical issues



Model fit 

• In general, the idea is: 
• How well does the model implied covariance matrix reproduce the data 

covariance matrix

• Single model fit: 
• BRMSEA, BCFI, BTLI
• PPC: posterior predictive (model) checking

• Posterior predictive p-value (PPP)

• Model comparison: 
• Information criteria: DIC, WAIC, LOOIC
• Bayes factors



Model fit – the classics

• The fit function from maximum likelihood estimation
𝐹 = 𝑙𝑜𝑔 &𝜮 + trace 𝑺&𝜮"# − log 𝑺 − 𝑘 

can be seen as a deviance measure for the model implied covariance and the data 
covariance matrix
• We need the F value in the calculation of RMSEA, CFI, and TLI; 
• Posterior sample of implied covariance matrices 

-> posterior sample of F-values
-> posterior sample of RMSEA, CFI, and TLI: BRMSEA, BCFI, BTLI

• We also need the model complexity
• Model complexity used to be number of parameters 𝑝
• Because of the priors the model complexity is not equal to 𝑝 in the Bayesian 

framework, it is an estimated quantity



For calculation of CFI and TLI we need the null (baseline) 
model 
We already needed that in the frequentist SEM, but 
lavaan did that under the hood



PPP

• Posterior predictive p-value
• Compare the discrepancy of: 
• Posterior of model implied covariance matrices and observed covariance 

matrix
• Simulated data from the posterior covariance matrices and and the model 

implied covariance matrices (chance discrepancy, sampling distribution, a 
“good” fit discrepancy)

• Does the model’s discrepancy differ significantly from the discrepancy 
expected by chance?
• Should be 0.5, the smaller the worse



Information criteria

• Deviance information criterion (DIC)
• Point estimate of the deviance of the mean model implied covariance matrix

• Widely applicable information criterion (WAIC)
• The deviance for each person for each posterior sample

• Leave-one-out cross validation information criterion (LOOIC): 
• Deviance between the model trained for N-1 data and the remaining one 

observation as the test data
• N-times
• for MCMC of SEM computationally very expensive
• Approximation obtained with importance sampling (blavaan does that for 

you)



Fit a model with an additional residual covariance

The various information criteria show lower values 
for the adjusted model, we consider BF later

Ignore the warning



Frequentist model comparison

• Compare two models
• H0: the models are equal
• We can only reject the H0
But
• How much more likely is the complex model than the simple model?
• What is the probability of each model given the data?
• Within the space of possible models, which is the most likely?



Bayes factor

• Comparison of two models 𝑀! and 𝑀" by comparing their marginal 
likelihoods (the probability of the data under the model)
• In parameter estimation: 𝑝 𝑦 𝑀 = 𝑝 𝑦
• The ratio of the likelihoods is the Bayes factor: 

𝐵𝐹!" =
𝑝 𝑦 𝑀!

𝑝 𝑦 𝑀"

• How much more likely are the data under 𝑀! than under 𝑀"?



Bayes factor

• Can quantify evidence in favour of 𝑀! but 
also in favour of 𝑀"

• For example: 
• 𝐵𝐹!" = 3 -> the data are three times as 

likely under 𝑀! than under 𝑀"
• How much more likely are the data under 𝑀" 

than under 𝑀!? 𝐵𝐹"! = 	1/𝐵𝐹!"
• For SEM the marginal likelihoods are not 

easy to estimate:
• Approximations exist: Laplace 

approximation, BIC transformation for the BF
• You could use sampling methods such as 

importance sampling, path sampling, 
bridgesampling

https://vasishth.github.io/bayescogsci/book/ch-bf.html



We specify a model with a 
crossloading

Obtain the marginal log likelihood, 
the marginal likelihood itself would be a number so small R 
would just say 0

We continue with the log values, then 
the ratio becomes a difference: 
obtain the logBF12, which is very small, 
so lots of evidence against M1

The inverse, so logBF21 is very large, so 
lots of evidence for M2
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Bayesian model averaging (BMA)

• With BFs we are still comparing one model against another, 
eventually settling on one “good” model which we base all inferences 
on
• What if we estimated the posterior model probability (PMP) of each 

possible model?
• We could use the PMP as weights for our parameter estimates



BMA

• Lets say we have 4 candidate models
• What is the posterior model probability of M1?

𝑝 𝑀! 𝑦 =
𝑝 𝑀! % 𝑝(𝑦|𝑀!) 
∑$%!& 𝑝 𝑦 𝑀$ 𝑝 𝑀$

• In practice we often choose a uniform prior for the models, that is, all 
models are equally likely a-priori, so 𝑝 𝑀! = .25



Candidate model

• Choosing candidate models can be hard if the number of possible models is 
large, let’s only look at the regressions for now:

And many more… but let’s assume we define only these four as candidate models
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We run each model, orthogonal 
means we don’t estimate the 
correlations among latent variables

Extract the log marginal likelihood

This is a workaround to be able to 
work with the tiny numbers 
produced by exp()

That’s the formula for the PMP

Model 2 has the highest PMP



BMA

With the PMPs we can:
• Estimate the posterior inclusion probability of the parameter
• Sum the posterior model probabilities that include the parameter

• Estimate a model-averaged posterior distribution for a parameter:
• Draw a model based on the PMPs
• Draw a value for the parameter from its posterior under this model 
• Repeat many times
• Doing this for only the models that include the parameter answers the 

question, assuming the effect is present how strong is it?

• Much more: Inclusion BF, Exclusion BF



Outline

• Introduction
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Practical Issues for BSEM (and BMA)

• The marginal likelihood approximation is not very stable for complex 
models or small samples
• The priors are important for BFs and BMA
• Reducing the number of possible candidate models is not straightforward
• Comparing certain models in SEM in a BMA framework is debatable: For 

example, the latent variable(s) in a one-factor and two-factor model have a 
different meaning -> comparing 🍎 and 🍊?

• blavaan allows a lot of models, but not the same functionality as lavaan
• In general, lots of models do not fit well, BSEM cannot help, well calibrated 

test instruments and good theory are key



Last slide

Good luck with the final assignment and hopefully you can enjoy the 
free time after 🙂


