The Reliability of Multidimensional Scales: A Comparison of Confidence Intervals and a Bayesian Alternative

Julius M. Pfadt, Don van den Bergh, Morten Moshagen

Correspondence to julius.pfadt@gmail.com

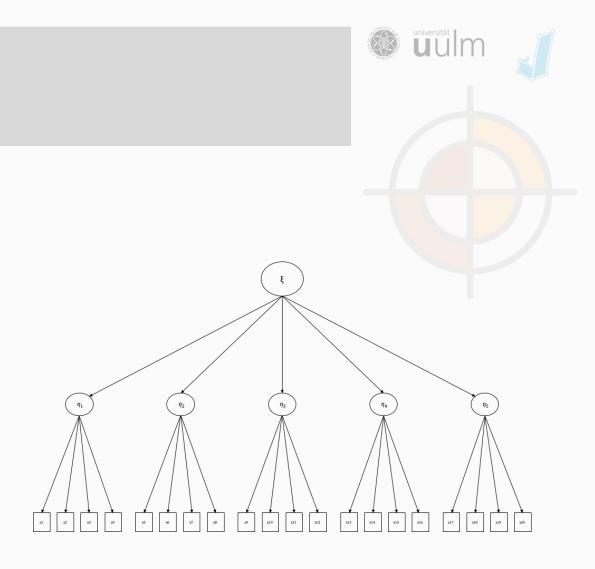
Outline

- Motivation
- Higher-Order Factor Model
- Confidence Intervals
- Bayesian Estimation
- Example
- Simulation
- Conclusion

Motivation – Reliability

•
$$\rho = \frac{\sigma_T^2}{\sigma_X^2}$$

- For unidimensional tests: Coefficient α or coefficient ω_u
- For multidimensional tests:
 - Coefficient ω_t
 - Coefficient ω_h estimates different form of reliability: general factor saturation of a scale



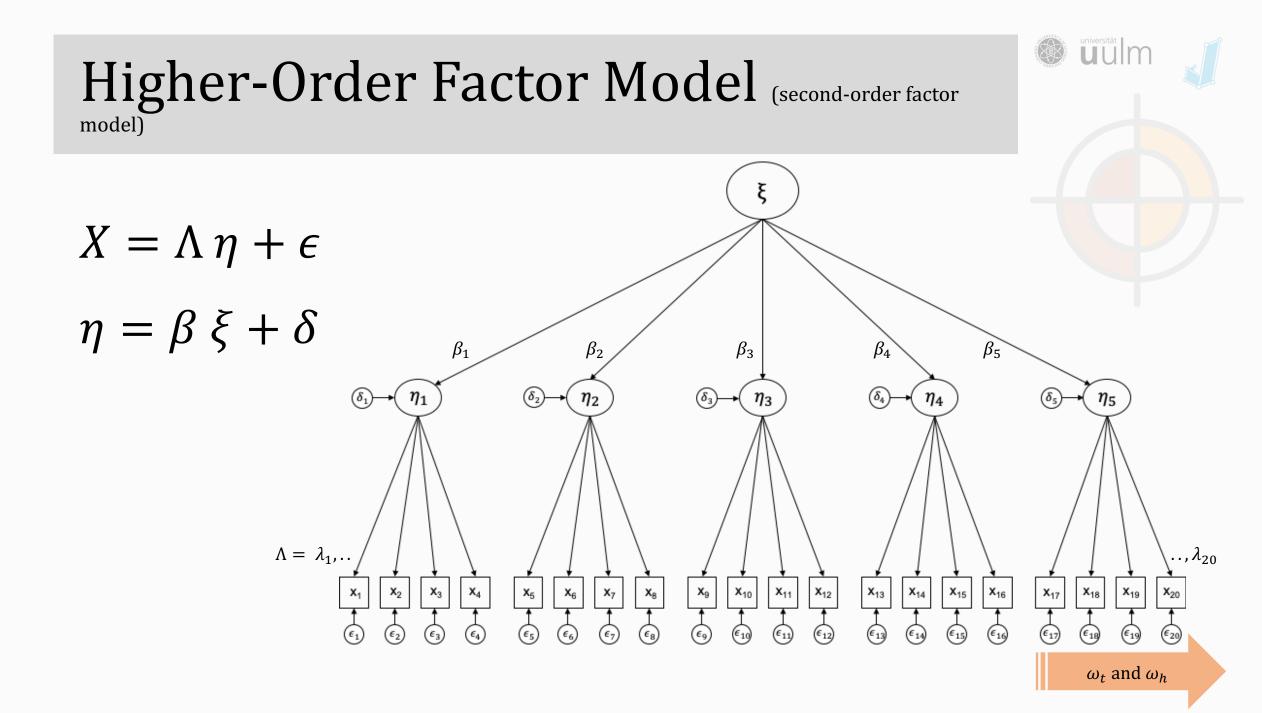
Current Issues

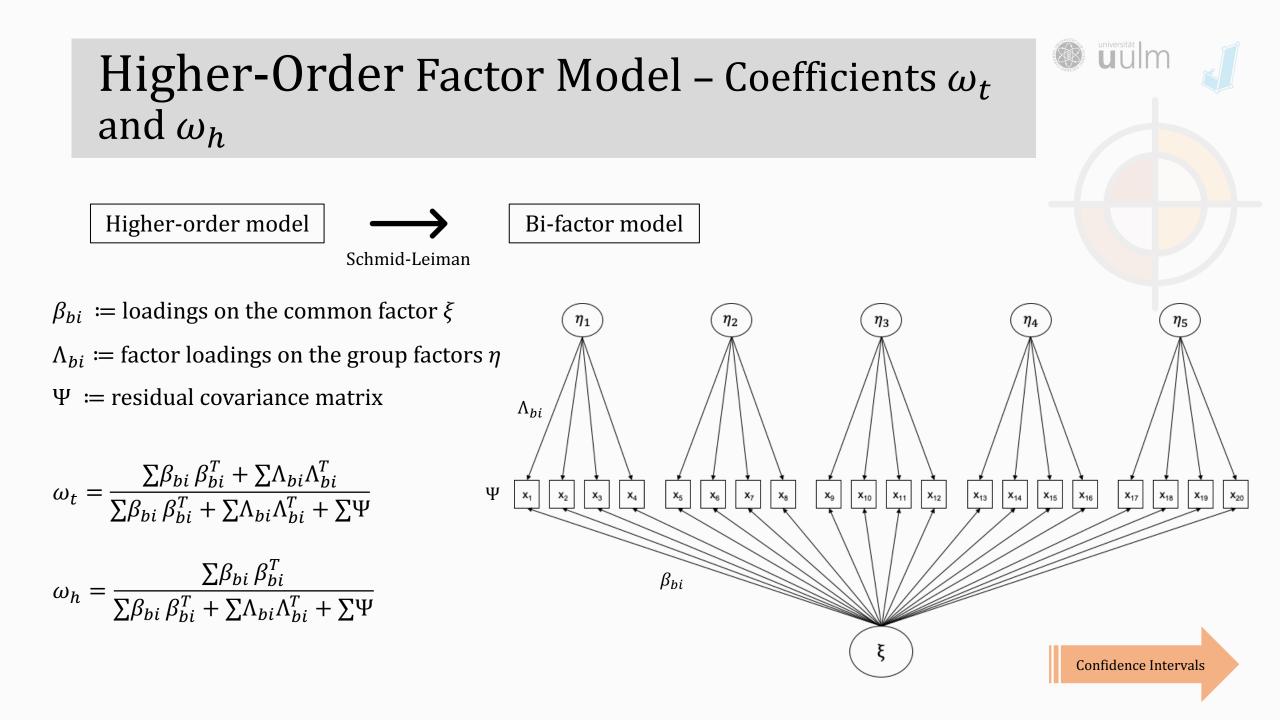
Motivation – Current Issues

- Uncertainty estimation is neglected in reliability analysis
 - Confidence intervals for ω_t and ω_h are rarely researched
 - Credible intervals for ω_t and ω_h unavailable

Solution:

- Make all methods available through R and JASP
- Investigate six confidence intervals
- Fit the higher-order factor model in the Bayesian framework





Confidence Intervals

Frequentist procedures to fit the higher-order model:

Exploratory Factor Analysis (EFA)

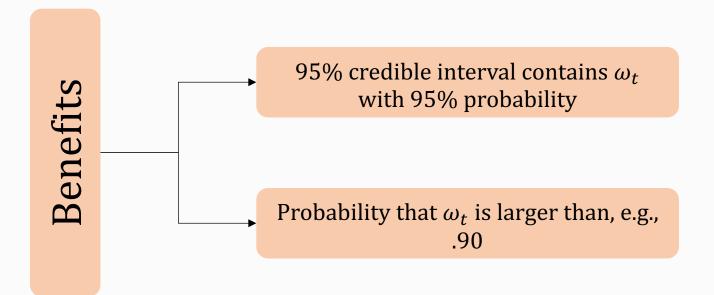
 \rightarrow Bootstrap intervals

- Confirmatory Factor Analysis (CFA)
 - \rightarrow Wald-type interval

An X% confidence interval for a parameter θ is an interval (L, U) generated by a procedure that in repeated sampling has an X% probability of containing the true value of θ , for all possible values of θ (Morey et al., 2016; Neyman, 1937)

Bayesian Estimation

Prior distribution Data Posterior Distribution



Priors

Bayesian Estimation – Priors

Factor model:

 $X = \Lambda \, \eta + \epsilon$

 $\eta = \beta \ \xi + \delta$

We assume *X* is multivariate normally distributed:

Parameter	Λ Group factor loadings	β Common factor loadings	ψ_{ϵ}^2 Variances of manifest residuals	ψ_{δ}^{2} Variances of the latent residuals	$\Omega = (\xi, \eta)$ Factor scores of all latent variables	Φ Covariance matrix of latent variables
Prior	$N(0, \Sigma_{\Lambda})$	$N(0, \sigma_{\beta}^2)$	$\Gamma^{-1}(\alpha_{\epsilon},\beta_{\epsilon})$	$\Gamma^{-1}(\alpha_{\delta},\beta_{\delta})$	$N(0, \Sigma_{\Omega})$	$W^{-1}(\nu, \Psi)$

Lee, 2007

universität UUN

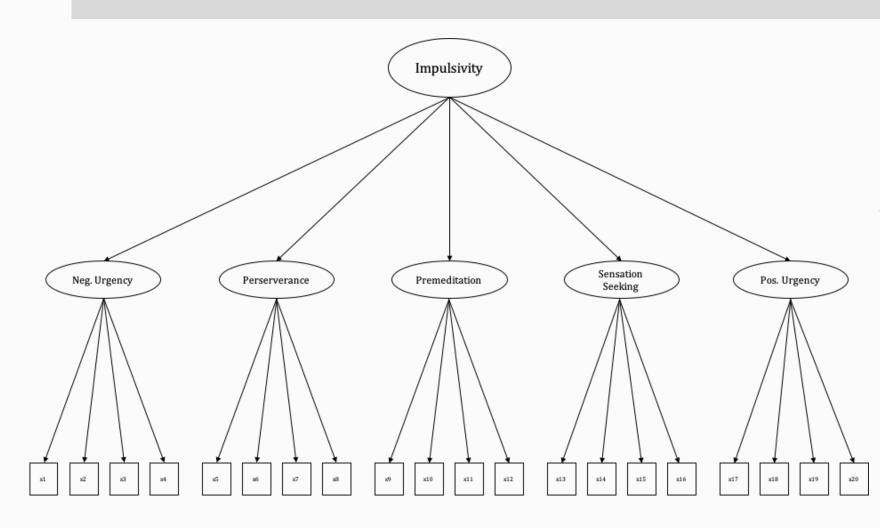
0.90 82 0.80 0.75

Example

Bayesian Estimation – Procedure

- MCMC: Draw consecutively from conditional posterior distributions of the parameters of the higher-order factor model (Lee, 2007)
- 2. Compute ω_t and ω_h for each posterior sample of factor model parameters (loadings and residuals)

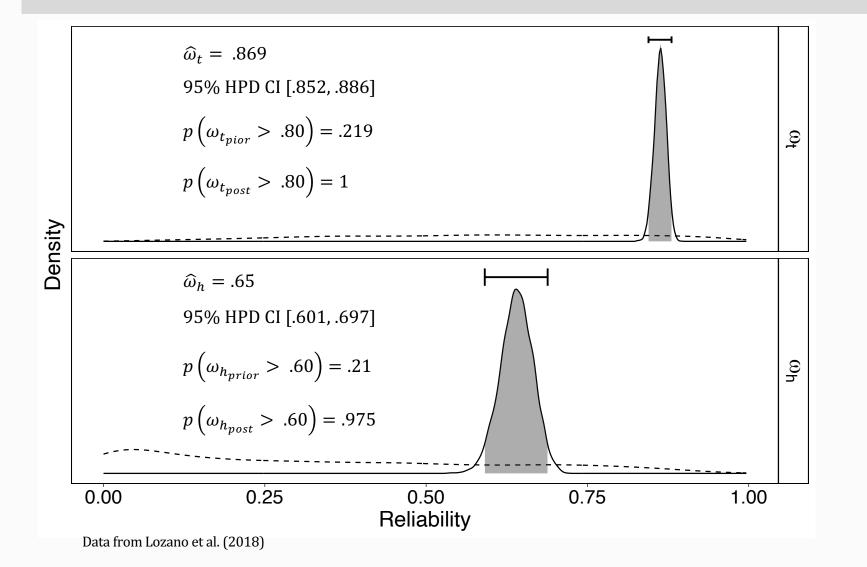
Example – Impulsivity-Scale



UPPS-P questionnaire (Cyders et al., 2014):

- Impulsivity measured by 20 Likert-scaled items
- Items: "I finish what I start", "I quite enjoy taking risks"

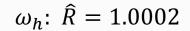
Example – Impulsivity-Scale – Results

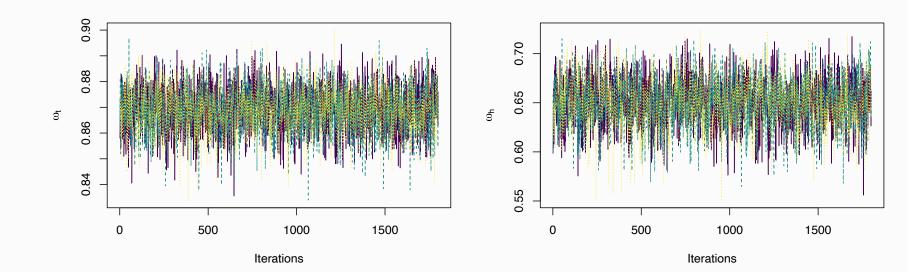


Convergence

Example – Impulsivity-Scale – Convergence

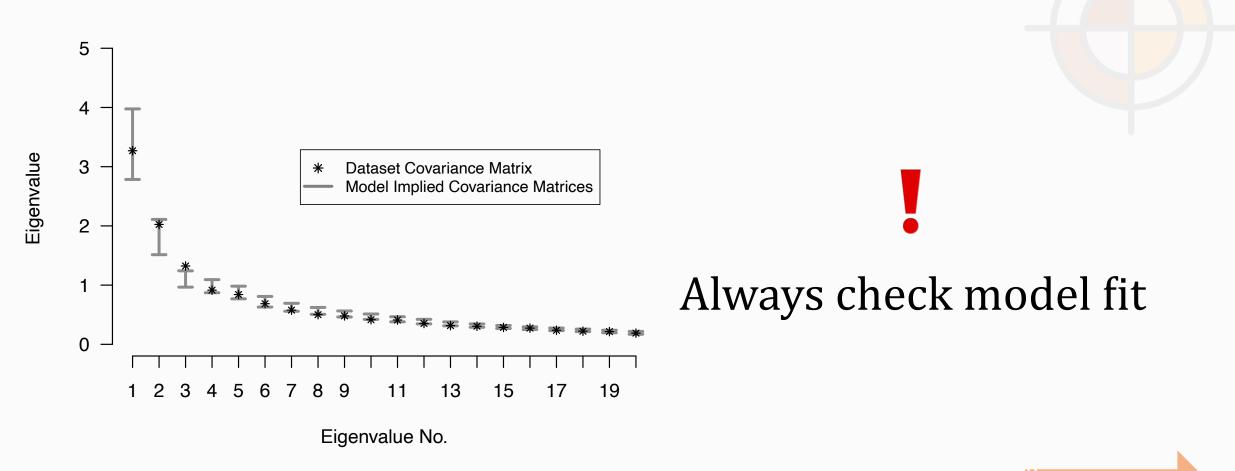
 $\omega_t: \hat{R} = 1.0005$





<u>This Photo</u> by Unknown Author is licensed under <u>CC BY</u>

Example – Impulsivity-Scale - Posterior predictive check



Simulation

Simulation – Setup

Comparison of six confidence intervals...

EFA	CFA		
Bootstrap confidence intervals			
Standard error interval (SE)	Wald-type confidence interval		
Standard error bias corrected interval (SE _{Bias})			
Standard error log-transformed interval (SE $_{Log}$)	wald-type connuence interval		
Percentile interval (Perc)			
Bias corrected and accelerated interval (BCA)			

... and credible intervals for ω_t and ω_h

universität UUIN

Simulation – Results

95% Coverage results (excerpt):

Interval	ω _t	ω_h
SE	.927	.946
SE _{Bias}	.930	.940
SE _{Log}	.934	.947
Perc	.925	.954
BCA	.935	.944
Wald	.943	.941
Credible interval (HPD)	.942	.942

9 items, 3 group factors, n = 500, $\omega_t = .8$, $\omega_h = .6$

- generally confidence intervals and credible intervals agreed
- the SE, SE_{Log}, and Wald intervals performed well
- the Bayesian credible intervals performed well

Conclusion

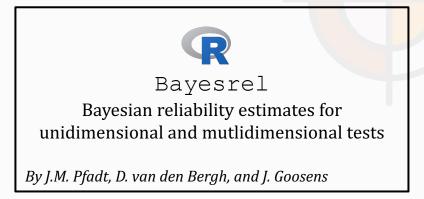
Conclusion

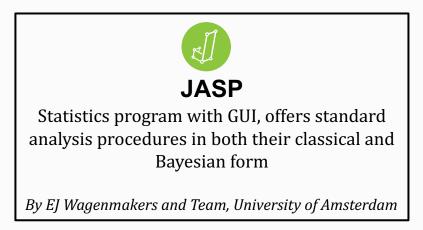
- Uncertainty estimation is important
- $\dot{\Phi}$ Well-performing confidence intervals available for ω_t and ω_h
- $\dot{\Phi}$ Posterior distributions for ω_t and ω_h offer simple inferences and interpretation

Conclusion – Recommendation

How to obtain the intervals for ω_t and ω_h :

- In **R** :
 - bootstrap confidence intervals: psych-package
 - Wald intervals: lavaan-package (tedious), or Bayesrel-package (easier)
 - Credible intervals and posterior probabilities through the Bayesrel-package
- In 🗐 : coming soon...





References

- Cyders, M. A., Littlefield, A. K., Coffey, S., & Karyadi, K. A. (2014). Examination of a short English version of the UPPS-P Impulsive Behavior Scale. *Addictive Behaviors, 39(9*), 1372–1376. https://doi.org/10.1016/j.addbeh.2014.02.013
- Lee, S.-Y. (2007). *Structural equation modeling: A Bayesian approach*. John Wiley & Sons Ltd. https://doi.org/10.1002/9780470024737
- Lozano, Ó. M., Díaz-Batanero, C., Rojas, A. J., Pilatti, A., & Fernández-Calderón, F. (2018). Concordance between the original and short version of the Impulsive Behaviour Scale UPPS-P using an IRT model. *PLOS ONE, 13*(3), 1–15. https://doi.org/10.1371/journal.pone.0194390
- Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J. (2016). The fallacy of placing confidence in confidence intervals. *Psychonomic Bulletin & Review, 23*(1), 103–123. https://doi.org/10.3758/s13423-015-0947-8
- Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. *Philosophical Transactions of the Royal Society of London, Series A, 236*(767), 333–380. https://doi.org/10.1098/rsta.1937.0005