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Introduction

Motivation

Measurement in psychology is not perfect

Researchers try to quantify measurement error =
reliability analysis

How can the status quo be advanced?

(1) Improve the understanding of popular
reliability coefficients
(2) Improve the way these coefficients are
estimated with new methods
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Reliability Introduction

Measurement in Classical Test Theory (CTT)

◦ Split test score Xi of participant i into a hypothetical true part Ti

and an error part Ei

◦ On a test score level:

X = T + E (1)

σ2X = σ2T + σ2E (2)

◦ Reliability ρ:

ρ =
σ2T
σ2X

= 1−
σ2E
σ2X

(3)
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Reliability Classical Test Theory

Reliability in CTT

◦ A measurement instrument that is reliable yields similar results if
administered to the same people multiple times

◦ For instance, a bathroom scale, or an intelligence test

◦ Classical definition of reliability: The repeatability of a
measurement
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Reliability Classical Test Theory

CTT-Reliability

Reliability ρ equals the correlation of parallel tests:

ρ = ρXX ′ (4)

◦ Parallel tests X and X ′ are identical tests that are administered to the same
sample of participants under the same conditions

◦ The correlation of parallel test scores equals the proportion of test score
variance that is true score variance

◦ However, parallel tests are unavailable in practice

◦ CTT-coefficients approximate the reliability from a single test administration:
α, λ2, greatest lower bound (glb)
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Reliability Factor Analysis

Another measurement theory: Factor analysis (FA)
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Reliability Factor Analysis

Factor Analysis

◦ Split test score Xi of participant i into a part
explained by one or more factors Fi (latent
variables) and a part that cannot be
explained, Ei . Test score level:

X = ΛF + E (5)

◦ Loadings Λ indicate how much influence the
factor has on the item responses
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Reliability Factor Analysis

FA-Reliability

◦ Reliability is the relative amount of test score variance that can be
explained by the factor(s):

ρ =

∑
Λ2

σ2X
(6)

◦ Reliability depends on the fit of the factor model

◦ FA-coefficients: ωu for unidimensional data, ωt and ωh for
multidimensional data

Julius Pfadt The Present and Future of Reliability Analysis 9 / 42



Part I: The Choice of Coefficients

Outline

1 Reliability

2 Part I: The Choice of Coefficients

3 Part II: The Choice of Estimation

4 Conclusions

Julius Pfadt The Present and Future of Reliability Analysis 10 / 42



Part I: The Choice of Coefficients

What coefficients should researchers choose to estimate reliability?
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Part I: The Choice of Coefficients CTT-Coefficients

Coefficient α (and other CTT-Coefficients)

◦ Coefficient α equals reliability when test items are essentially true
score equivalent (e.g., Lord & Novick, 1968)

◦ Coefficient α is smaller than the reliability when test items are not
ess. true score equivalent → lower bound (e.g., Sijtsma, 2009)

◦ The more multidimensional a test the smaller coefficient α
compared to the reliability (e.g., Dunn et al., 2014)
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Part I: The Choice of Coefficients CTT-Coefficients

The use of coefficient α has been criticized a lot (Cho, 2016; Cho & Kim, 2015; Dunn

et al., 2014; Graham, 2006; Green & Hershberger, 2000; Green & Yang, 2009; Lucke, 2005; Teo & Fan, 2013).

Article I

Sijtsma, K., & Pfadt, J. M. (2021a). Part II: On the use, the misuse, and the very limited
usefulness of Cronbach’s alpha: Discussing lower bounds and correlated errors.
Psychometrika, 86(4), 843–860. https://doi.org/10.1007/s11336-021-09789-8
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α Discussion

Criticism (1): “Essential true-score equivalence is unrealistic; hence,
lower bounds (α) must not be used”
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α Discussion

Counter-argument (1): All models are wrong

◦ Models are perfect descriptions of an imperfect reality → fit by
approximation

◦ When true-score equivalence does not hold → coefficient α
becomes a lower bound

Counter-argument (2): Lower bounds are useful in practice

◦ Conservative estimation is desired in high stake conditions
(admissions test, medical diagnosis)

◦ With unidimensional data, the discrepancy of lower bounds is
generally small (see, e.g., Hunt & Bentler, 2015)

◦ CTT model always fits
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α Discussion

Criticism (2): “With correlated errors the lower bound property of
coefficient α fails” → Coefficient α may be larger than the reliability
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α Discussion

Counter-argument: CTT and FA approaches are conceptually
different

Test score variance

Systematic 
target 

variance

Systematic 
non-target 
variance 

(error 
correlations)

Error 
variance

True score variance Error score variance

FA

Test score variance

Systematic variance (incl. 
error correlations)

Error 
variance

True score variance Error score variance

CTT

→ CTT and FA define different reliabilities because they define the
true score variance differently
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α – Discussion

CTT and FA approaches are conceptually different

◦ CTT assumption: Errors are uncorrelated, because all systematic
(repeatable) influences are part of the true score

◦ Assuming correlated errors means leaving CTT → properties
derived from it become invalid (lower bound theorem)

◦ In CTT, reliability depends on test-group-procedure

◦ In FA, separating systematic non-target variance (correlated errors)
tries to free reliability from the influence of the procedure
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Part II: The Choice of Estimation
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Part II: The Choice of Estimation

In practice, researchers report a coefficient α point estimate for their
reliability analysis.
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Part II: The Choice of Estimation Uncertainty Estimation

Uncertainty Estimation

“There is no excuse whatever for omitting to give a properly determined standard
error [...]. All statisticians will agree with me here, [...].” (Jeffreys, 1961, p. 410)

◦ In psychological studies we draw a finite sample from a population
→ sampling error

◦ How to generalize the results to the population?

◦ Proper statistical practice: Account for sampling error by
indicating the uncertainty of a parameter point estimate with, e.g.,
a standard error or an interval

◦ However, in reliability, this practice is virtually non existent (Flake
et al., 2017; Moshagen et al., 2019; Oosterwijk et al., 2019)
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Part II: The Choice of Estimation Uncertainty Estimation

Frequentist Framework: Confidence Intervals

◦ Misconception: “The 95% confidence interval of a parameter
contains the parameter with 95% probability; one can be 95%
certain that the interval contains the parameter.”

◦ Probability if a specific reliability confidence interval covers the
true parameter is unknown

◦ Definition: The 95% confidence interval covers the parameter in
95% of the cases when one would repeat the process of sampling
and computing the 95% confidence interval for the parameter
numerous times (Morey et al., 2016; Neyman, 1937).

→ A 95% credible interval (Bayesian framework) contains the
parameter with 95% probability
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Part II: The Choice of Estimation Uncertainty Estimation

Bayesian Parameter Estimation

posterior︷ ︸︸ ︷
p(θ | X ) ∝

likelihood︷ ︸︸ ︷
p(X | θ)

prior︷︸︸︷
p(θ) (7)
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Part II: The Choice of Estimation Bayesian Reliability Estimation

Bayesian Reliability Estimation

Benefits:

◦ Probability that the reliability parameter lies in a specific interval,
for instance, the 95% credible interval

◦ Probability that the reliability exceeds a specific value, for
instance, .80

◦ Incorporate prior knowledge about the reliability of a test
instrument into the analysis

Obstacle: The posterior distributions of reliability coefficients are
generally unavailable to researchers
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Part II: The Choice of Estimation Bayesian Reliability Estimation

How to obtain the posterior distributions of CTT and FA reliability
coefficients?

Article IV

Pfadt, J. M., van den Bergh, D., Sijtsma, K., Moshagen, M., & Wagenmakers, E.-J. (2022).
Bayesian estimation of single-test reliability coefficients. Multivariate Behavioral Research,
57(4), 620–641. https://doi.org/10.1080/00273171.2021.1891855

Article VI

Pfadt, J. M., van den Bergh, D., & Moshagen, M. (in press). Classical and Bayesian
uncertainty intervals for the reliability of multidimensional scales. Structural Equation
Modeling: A Multidisciplinary Journal. https://doi.org/10.1080/10705511.2022.2124162
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Part II: The Choice of Estimation Bayesian Reliability Estimation

CTT-Coefficients (α, λ2, glb)

◦ Calculated from the data covariance matrix

→ Estimate the covariance matrix in the Bayesian framework:
◦ Data are multivariate normal
◦ Conjugate prior for the covariance matrix: inverse Wishart
distribution

→ sample directly from the posterior distribution of the covariance
matrix, with hyperparameters obtained from the data (Gelman
et al., 2013)

◦ From the posterior covariance matrices compute posterior samples
of the CTT-coefficients using the coefficient formulas
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Part II: The Choice of Estimation Bayesian Reliability Estimation

FA-Coefficients – Unidimensional

Coefficient ωu:
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Part II: The Choice of Estimation Bayesian Reliability Estimation

FA-Coefficients – Multidimensional

Coefficients ωt and ωh:
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Part II: The Choice of Estimation Bayesian Reliability Estimation

Bayesian Factor Model Estimation

◦ Methodology from Bayesian SEM (Lee, 2007):
◦ Data are multivariate normal
◦ Conjugate priors: Normal distributions for loadings and factor
scores, inverse gamma distributions for residual variances

◦ Posteriors via Gibbs sampling: Draw from the posterior
distribution of a model parameter conditional on the remaining
model parameters

◦ Using the posterior samples of loadings and residual variances
compute the posterior samples of ωu/ωt/ωh using the coefficient
formulas
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Part II: The Choice of Estimation Bayesian Reliability Estimation

Simulation Studies

How do the Bayesian reliability coefficients perform statistically compared to
confidence intervals? → Simulations with multiple conditions
Unidimensional results:

◦ Similar credible and confidence intervals

◦ The Bayesian versions of α, λ2, glb, ωu performed well across realistic
conditions: Point estimates converged on the population values and coverage
reached to .95
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Method: Frequentist Bayes True Coefficient Value Point Estimate
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Part II: The Choice of Estimation Bayesian Reliability Estimation

Simulation Studies

Multidimensional results:
◦ The Bayesian ωt , ωh performed well; however, with low reliability

a relatively large sample size (N=500) was needed for satisfactory
coverage
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Part II: The Choice of Estimation Bayesian Reliability Estimation

Simulation Studies – Conclusion

The Bayesian coefficients perform well and should be applied for
uncertainty estimation in reliability.
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Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Bridging the Gap between Theory and Practice: R

◦ The R-package Bayesrel contains all
developed methods

◦ The R framework addresses researchers
familiar with programming

◦ For others, the use of the Bayesian reliability
estimates depends on an implementation in
GUI-based software
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Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Bridging the Gap: JASP

◦ Statistical click-and-response program much
like SPSS but free and open-source

◦ Offers many popular analyses in a classical
and a Bayesian way

◦ Perfect environment to implement Bayesian
reliability estimates

Article V:

Pfadt, J. M., van den Bergh, D., Sijtsma, K., & Wagenmakers, E.-J. (in press). A tutorial
on Bayesian single-test reliability analysis with JASP. Behavior Research Methods.
https://doi.org/10.3758/s13428-021-01778-0

Julius Pfadt The Present and Future of Reliability Analysis 34 / 42

https://doi.org/10.3758/s13428-021-01778-0


Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Tutorial

◦ Complete Bayesian reliability analysis in JASP with coefficients ωu

and α
◦ Data set from Nicolai and Moshagen (2018) containing the

responses of 78 participants on a 5-item self-rating scale for manic
symptoms (ASRM)

Julius Pfadt The Present and Future of Reliability Analysis 35 / 42



Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Tutorial

Julius Pfadt The Present and Future of Reliability Analysis 36 / 42



Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Tutorial
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Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Tutorial

Julius Pfadt The Present and Future of Reliability Analysis 38 / 42



Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Tutorial

Julius Pfadt The Present and Future of Reliability Analysis 39 / 42



Conclusions

Outline

1 Reliability

2 Part I: The Choice of Coefficients

3 Part II: The Choice of Estimation

4 Conclusions

Julius Pfadt The Present and Future of Reliability Analysis 40 / 42



Conclusions Conclusions

Conclusions

Part I – Psychometric models:

◦ Lower bounds remain useful under certain conditions

◦ FA-reliability is different from CTT-reliability

◦ Coefficient α is a lower bound to the reliability as
defined by CTT

Part II – Uncertainty estimation:

◦ Uncertainty estimation is imperative in reliability
analysis

◦ The posterior distribution of reliability coefficients is
highly practical

◦ R-package and JASP implementation help
researchers change their reliability reporting routine
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Thank you for your attention!

Julius Pfadt The Present and Future of Reliability Analysis 42 / 42



Appendix

Appendix
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Appendix CTT-coefficients

CTT-Coefficients (α, λ2, glb)

Calculated from the data covariance matrix, Σ:

α =
k

k − 1

(
1− tr(Σ)

Σ

)
(8)

λ2 =
Σ− tr(Σ) +

√
k

k−1 c

Σ
(9)

glb = 1− tr(ΣE )

Σ
(10)
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Appendix FA-Coefficients Equations

FA-Coefficients

◦ Unidimensional data → based on single-factor model:

ωu =
(
∑
λ)2

(
∑
λ)2 +

∑
ψ

(11)

◦ Multidimensional data → based on bi-factor model:

ωt =

∑
Λ2∑

Λ2 +
∑
ψ

(12)

ωh =
(
∑
λg )

2

(
∑
λg )2 +

∑
ψ
. (13)

◦ ωt estimates total reliability, ωh estimates g-factor reliability
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Appendix Article II: Rejoinder

Coefficient α Rejoinder

Article II:

Sijtsma, K., & Pfadt, J. M. (2021b). Rejoinder: The future of reliability. Psychometrika,
86(4), 887–892. https://doi.org/10.1007/s11336-021-09807-9

◦ Rejoinder to comments by Bentler, Ellis, and Cho

◦ Sound psychological theory should be at the core of any
measurement

◦ The theory informs the measurement model which informs the
reliability approach

◦ Disentangling target and non-target influences is not validity
research

◦ In relation to reliability two main research areas are often
overlooked:

◦ How does reliability relate to the power of statistical tests?
◦ How to properly indicate the measurement error of an individual?
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Appendix Article III: Statistical Properties of Reliability Coefficients

Studies to investigate the performance of reliability coefficients use
narrow data generation schemes → How do the coefficients perform
with a wide range of data structures?

Article III

Pfadt, J. M., & Sijtsma, K. (2022). Statistical properties of lower bounds and factor
analysis methods for reliability estimation. In M. Wiberg, D. Molenaar, J. González,
J.-S. Kim, & H. Hwang (Eds.), Quantitative psychology: The 86th Annual Meeting of the
Psychometric Society, virtual, 2021 (pp. 51–63). Springer International Publishing.
https://doi.org/10.1007/978-3-031-04572-1 5
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Appendix Article III: Statistical Properties of Reliability Coefficients

Simulation Study

◦ Uni- and Multidimensional data generated from IRT models
(conceptually closer to CTT), and an FA models

◦ Coefficients: α, λ2, λ4, glb, ωu, ωh, ωt

◦ Misspecification condition:
◦ Case (1):

◦ Population model is multidimensional with a common factor
◦ Researcher assumes unidimensionality → coefficient ωu

◦ Case (2):
◦ Population model is purely multidimensional with no common

factor
◦ Researcher assumes a common factor → estimates coefficients α,

λ2, λ4, glb, ωh, ωt
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Appendix Article III: Statistical Properties of Reliability Coefficients

Results – Unidimensional Data

IRT−data FA−data

α
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Reliability
Coefficient

Figure 1. The point estimates of the coefficients across 1,000 simulation runs for k = 18 items and sample size of
n = 500. In the IRT-conditions the data were generated from a 2-parameter graded response model. In the FA-conditions
the data were generated from a single-factor model.
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Appendix Article III: Statistical Properties of Reliability Coefficients

Results: Multidimensional Data

IRT−data FA−data
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Figure 2. The point estimates of the coefficients across 1,000 simulation runs for k = 18 items and sample size of
n = 500. In the IRT-conditions the data were generated from a 2-parameter graded response model with three latent
variables and intercorrelations of .3. In the FA-conditions the data were generated from a second-order factor model with
three primary latent variables.
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Appendix Article III: Statistical Properties of Reliability Coefficients

Results: Misspecified Models
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Figure 3. The point estimates of the coefficients across 1,000 simulation runs with n = 1, 000. The data for Case (1) was
generated from a second-order factor model with three primary latent variables. The data for Case (2) was generated from
a factor model with three latent variables and no intercorrelations.
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Appendix Article III: Statistical Properties of Reliability Coefficients

Simulation Study

Results summary:

◦ No meaningful differences between the IRT and FA conditions

◦ With unidimensional data, most coefficients performed well

◦ With multidimensional data the ω-coefficients performed well

Conclusions:

◦ When data are unidimensional the choice of a reliability coefficient
is virtually arbitrary

◦ When data are multidimensional use an FA-coefficient

◦ When using an FA-coefficient confirm model fit

Julius Pfadt The Present and Future of Reliability Analysis 52 / 42



Appendix Article IV: Bayesian Single Test Reliability Estimation

Simulation Study – Bayesian Single Test Reliability
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Figure 5. Simulation results for the medium-correlation condition with k = 5 items. The endpoints of the bars are the
mean 95% uncertainty interval limits. The 25%- and 75%-quartiles are indicated with vertical line segments.
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Appendix Article IV: Bayesian Single Test Reliability Estimation

Simulation Study – Bayesian Single Test Reliability

Results summary:

◦ The credible intervals for coefficients α, λ2, and ωu performed
satisfactory,

◦ The Bayesian point estimation was slightly worse than the classical
(frequentist) in small samples

◦ The results for the classical bootstrap confidence intervals and the
Bayesian credible intervals generally agreed

Conclusions:

◦ Use uncertainty estimates to accompany point estimates of α, λ2,
and ωu, preferably the credible intervals we implemented

◦ The use of intervals is even more important when the sample size
is small
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Appendix Article VI: Bayesian Multidimensional Reliability

Introduction – Bayesian Multidimensional Reliability

◦ Coefficients ωt for the total reliability and ωh for the g-factor
reliability (see Equations 12 and 13)

◦ The ω-coefficients can be based on a second-order factor model:
ξ
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◦ relates several primary group factors to the items (facets,
dimensions)

◦ relates a general secondary factor to the group factors (common
attribute)

◦ is nested in the bi-factor model

◦ The second-order factor model loadings are transformed to yield
the bi-factor model loadings for ωt and ωh
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Appendix Article VI: Bayesian Multidimensional Reliability

Motivation

◦ Credible intervals for coefficients ωt and ωh are not available

◦ Different methods to obtain confidence intervals of ωt and ωh are
scarcely researched

→ Develop Bayesian versions of ωt and ωh

→ Compare multiple confidence intervals
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Appendix Article VI: Bayesian Multidimensional Reliability

Bayesian Estimation

◦ Similar to coefficient ωu and the single-factor model

◦ Prior distributions for the second-order factor model (see Lee,
2007):

◦ A multivariate normal distribution for the group factor loadings,
and the factor scores

◦ A normal distribution for the general factor loadings
◦ An inverse gamma distribution for the manifest and the latent
residuals

◦ An inverse Wishart distribution for the covariance matrix of the
latent variables

◦ We use MCMC sampling

◦ We compute the posterior samples of ωt and ωh from the
posterior samples of loadings and residuals
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Appendix Article VI: Bayesian Multidimensional Reliability

Simulation Study

How do the Bayesian versions of ωt and ωh perform statistically? How do different
confidence intervals perform?

Confidence intervals:

◦ EFA based non-parametric bootstrap intervals: Standard error (SE), standard
error bias corrected (SEBias), standard error log transformed (SELog ), percentile
(Perc), bias corrected and accelerated (BCA)

◦ CFA based Wald-type interval (Wald)

Conditions:

◦ Data were generated from a second-order factor model

◦ Level of reliability: Low (.5) and high (.8)

◦ Number of items (model size): 9 (three group factors) and 30 (five group
factors)

Results included:

◦ Root mean square error of point estimates

◦ Coverage of 95% uncertainty intervals
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Appendix Article VI: Bayesian Multidimensional Reliability

Simulation Study

Results summary:

◦ Out of the confidence intervals, the BCA, and Wald interval
performed best

◦ The credible intervals performed satisfactory in most conditions

◦ With small samples and low reliability none of the intervals
performed well

Conclusions:

◦ Use intervals for ωt and ωh, preferably credible intervals

◦ Be cautious with multidimensional reliability estimation when
sample size is small and the reliability low

◦ Out of the confidence intervals, we recommend the Wald-type
interval if the CFA converges, otherwise the BCA interval
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