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Reliability Introduction

Introduction

Reliability analysis:

A quantification of measurement error

How well does a test instrument capture systematic influences ⇔
How repeatable is the measurement

For multiple test administrations → measures of agreement (e.g.,
ICCs)

For single test administrations → measures of
consistency/repeatability (e.g., coefficient α) → current project
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Reliability Classical Test Theory

Classical Test Theory

CTT defines classical reliability

Split test score Xi of participant i into a hypothetical true part Ti

and an error part Ei

On a test score level:

X = T + E (1)

σ2
X = σ2

T + σ2
E (2)
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Reliability Classical Test Theory

Reliability

Reliability ρ equals the correlation of parallel tests:

ρ = ρXX ′ =
σ2
T

σ2
X

= 1−
σ2
E

σ2
X

(3)

True scores T and T ′ of parallel tests correlate 1 per definition

Error scores E and E ′ of parallel tests correlate 0 per definition

→ Reliability answers the question how likely it would be to see the
same results if the test was readministered
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Reliability Classical Test Theory

CTT-Coefficients

Decompose the data covariance matrix Σ trying to disentangle
true score variance from error score variance

Popular coefficients:

α =
k

k − 1

(
1− tr(Σ)

Σ

)
(4)

λ2 =
Σ− tr(Σ) +

√
k

k−1 c

Σ
(5)

λ4 = max

[
2 ∗ (1−

σ2
A + σ2

B

σ2
X

)

]
(6)

glb = 1− tr(ΣE )

Σ
(7)
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Reliability Factor Analysis

Factor Analysis

Split test score Xi of participant i into a part explained by one or
more factors Fi and a part that cannot be explained, Ei :

X = ΛF + E (8)

Reliability is the relative amount of test score variance that can be
explained by the factor(s):

ρ =

∑
Λ2

σ2
X

(9)

True score variance is replaced by the factor explained variance

The adequacy of the reliability approximation is now dependent on
the fit of the factor model
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Reliability Factor Analysis

FA-Coefficients

Unidimensional data → based on single-factor model:

ωu =
(
∑
λ)2

(
∑
λ)2 +

∑
ψ

(10)

Multidimensional data → based on bi-factor model:

ωt =

∑
Λ2∑

Λ2 +
∑
ψ

(11)

ωh =
(
∑
λg )2

(
∑
λg )2 +

∑
ψ
. (12)

ωt estimates total reliability, ωh estimates g-factor reliability
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Part I: The Choice of Coefficients Properties of CTT-Coefficients

Coefficient α (and other CTT-Coefficients)

Properties:

Coefficient α equals the reliability when test items satisfy
true-score equivalence (e.g., Lord & Novick, 1968)

Coefficient α is smaller than the reliability when true-score
equivalence is violated → lower bound (e.g., Sijtsma, 2009)

Discrepancy increases with multidimensionality (e.g., Dunn et al.,
2014)
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Part I: The Choice of Coefficients Properties of CTT-Coefficients

Sijtsma, K., & Pfadt, J. M. (2021). Part II: On the use, the misuse,
and the very limited usefulness of Cronbach’s alpha: Discussing lower
bounds and correlated errors. Psychometrika.
https://doi.org/10.1007/s11336-021-09789-8
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α Discussion

Criticism (1): “Essential true-score equivalence is unrealistic; hence,
lower bounds must not be used”

Counter-argument (1): “All models are wrong”

Models are perfect descriptions of an imperfect reality → fit by
approximation

We accept a certain amount of misfit for FA coefficients

When true-score equivalence does not hold → coefficient α
becomes a lower bound
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α Discussion

Counter-argument (2): Lower bounds are useful in practice

Conservative estimation is desired in high stake conditions
(admissions test, medical diagnosis)

With unidimensional data, the discrepancy of lower bounds is
generally negligible (see, e.g., Hunt & Bentler, 2015)

With multidimensional data, unidimensional subsets can be used

Contrary to FA, CTT is tautological, meaning X = T + E is
always true, and the CTT-coefficients are always lower bounds to
the reliability
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α Discussion

Criticism (2): “Correlated errors cause the failure of the lower bound
theorem” → Coefficient α may be larger than the reliability

Counter-argument (1): CTT and FA approaches are
conceptually different

Correlated errors are associated with non-target influences

FA methods try to disentangle target from non-target influences
and define reliability based on the target-influences only

CTT methods try to indicate the degree to which a measurement
is repeatable under the same circumstances → non-target
influences that are repeatable are included in the true score

→ CTT and FA define different forms of reliability
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Part I: The Choice of Coefficients Coefficient α Discussion

Coefficient α Discussion

Counter-argument (2): “The lower bound theorem assumes
uncorrelated errors”

The use of CTT assumes that errors are uncorrelated, because
everything systematic is part of the true score

Assuming correlated errors means leaving CTT and reliability
defined by CTT → the lower bound theorem is invalid

The same test can have multiple reliabilities, since in CTT
reliability is always dependent on test-group-procedure
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Part I: The Choice of Coefficients Statistical Properties of Reliability Coefficients

Pfadt, J. M., & Sijtsma, K. (2021). Statistical properties of lower
bounds and factor analysis methods for reliability estimation.
[Manuscript submitted for publication]
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Part I: The Choice of Coefficients Statistical Properties of Reliability Coefficients

Simulation Study

Background:

Previous simulation studies used a factor model to generate the
data

The reliability equals the FA reliability coefficient

Coefficient α is compared to FA coefficients

Does the data generation affect the performance of the reliability
coefficients?

→ New simulation study with two types of data generation models

Conditions:

Data generation: From an IRT and a FA-model; unidimensional
and multidimensional

k = 9/18, n = 500/2000

Separate condition with a misspecified model

Coefficients: α, λ2, λ4, glb, ωu, ωh, ωt
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Part I: The Choice of Coefficients Statistical Properties of Reliability Coefficients

Results: Unidimensional Data

IRT−data FA−data

α
λ
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λ
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glb
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Reliability
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Coefficient

Figure 1. The point estimates of the coefficients across 1,000 simulation runs for k = 18 items and sample size of
n = 500. In the IRT-conditions the data were generated from a 2-parameter graded response model. In the
FA-conditions the data were generated from a single-factor model.
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Part I: The Choice of Coefficients Statistical Properties of Reliability Coefficients

Results: Multidimensional Data

IRT−data FA−data

α
λ
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4
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Coefficient
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Figure 2. The point estimates of the coefficients across 1,000 simulation runs for k = 18 items and sample size of
n = 500. In the IRT-conditions the data were generated from a 2-parameter graded response model with three latent
variables and intercorrelations of .3. In the FA-conditions the data were generated from a second-order factor model with
three primary latent variables.
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Part I: The Choice of Coefficients Statistical Properties of Reliability Coefficients

Misspecified Models

Case (1):

Population model is multidimensional with a common factor

Analysis assumed unidimensionality → estimated coefficient ωu

Case (2):

Population model is purely multidimensional with no common
factor

Analysis assumed a common factor → estimated coefficients α,
λ2, λ4, glb, ωh, ωt
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Part I: The Choice of Coefficients Statistical Properties of Reliability Coefficients

Results: Misspecified Models
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Figure 3. The point estimates of the coefficients across 1,000 simulation runs with n = 1, 000. The data for Case (1)
was generated from a second-order factor model with three primary latent variables. The data for Case (2) was
generated from a factor model with three latent variables and no intercorrelations.
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Part I: The Choice of Coefficients Statistical Properties of Reliability Coefficients

Simulation Study

Results summary:

No meaningful differences between the IRT and FA conditions

With unidimensional data, most coefficients performed well

With multidimensional data, the lower bounds performed
unsatisfactory

Coefficient λ2 was at least as good as α

The ω-coefficients performed well

Conclusions:

When data are unidimensional → use any reliability coefficient
except the glb

When data are multidimensional and the total reliability is of
interest → use ωt

When using an FA-coefficient → confirm model fit
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Part II: The Choice of Estimation

Outline

1 Reliability

2 Part I: The Choice of Coefficients

3 Part II: The Choice of Estimation

4 General Limitations and Conclusions

Julius Pfadt The Present and Future of Reliability Analysis 24 / 53



Part II: The Choice of Estimation Uncertainty Estimation

Uncertainty Estimation

Account for sampling error by indicating the uncertainty of a
parameter point estimate with, e.g., a standard error or an interval

In reliability reporting, this practice is virtually non existent (Flake
et al., 2017; Moshagen et al., 2019; Oosterwijk et al., 2019)

Possible reasons for this:

Reliability is a “minor” analysis
Intervals are contrary to the idea of reliability cutoffs
The idea that reliability as an indication of measurement error is
prone to sampling error is overlooked

“There is no excuse whatever for omitting to give a properly determined
standard error [...]. All statisticians will agree with me here, [...].”
(Jeffreys, 1961, p. 410)
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Part II: The Choice of Estimation Uncertainty Estimation

Confidence Intervals

The 95% confidence interval covers the parameter in 95% of the
cases when one would repeat the process of sampling and
computing the 95% confidence interval for the parameter
numerous times (Morey et al., 2016; Neyman, 1937).

Misconception: “The 95% confidence interval of a parameter
contains the parameter with 95% probability; one can be 95%
certain that the interval contains the parameter.”

→ A 95% credible interval contains the parameter with 95%
probability
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Part II: The Choice of Estimation Uncertainty Estimation

Bayesian Parameter Estimation

Pr(θ|D) ∝ Pr(D|θ) Pr(θ) . (13)

Combine the prior distribution of a parameter, Pr(θ), with the
likelihood of the data given the parameter, Pr(D|θ), to yield the
posterior distribution of the parameter, Pr(θ|D).

The prior distribution contains the probabilities for all parameter
values before observing the data D

The posterior distribution of the parameter contains the
probabilities of all parameter values after observing the data
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Part II: The Choice of Estimation Uncertainty Estimation

Bayesian Parameter Estimation: Visualization

0.00 0.25 0.50 0.75
Reliability

D
en

si
ty

Figure 4. An example prior-posterior plot of coefficient α. The dotted line denotes the prior distribution, the straight
line the posterior distribution. The error bar and the gray area denote the 95% credible interval.
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Part II: The Choice of Estimation Bayesian Single-Test Reliability Estimates

Pfadt, J. M., van den Bergh, D., Sijtsma, K., Moshagen, M., &
Wagenmakers, E.-J. (2021). Bayesian estimation of single-test
reliability coefficients. Multivariate Behavioral Research, 1–30.
https://doi.org/10.1080/00273171.2021.1891855
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Part II: The Choice of Estimation Bayesian Single-Test Reliability Estimates

Goal

Obtain the posterior distributions of the reliability coefficients for
unidimensional data (coefficients α, λ2, glb, and ωu):

→ Obtain Bayesian point estimates and credible intervals

→ Answer questions such as: “How likely is it that the reliability of
this test is higher than .80?”

→ Incorporate prior knowledge into the analysis
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Part II: The Choice of Estimation Bayesian Single-Test Reliability Estimates

Bayesian Estimation

We distinguish two groups of coefficients:

CTT-coefficients:

α, λ2, glb

Calculated from the data
covariance matrix

→ Estimate the covariance matrix
in the Bayesian framework

→ Compute the posterior
distributions of the reliability
coefficients from the posterior
distribution of the covariance
matrix

FA-coefficient:

ωu

Estimated from the data matrix
by fitting a single-factor model

→ Estimate the single-factor model
in the Bayesian framework

→ Compute the posterior
distribution of ωu from the
posterior distributions of the
single-factor model parameters
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Part II: The Choice of Estimation Bayesian Single-Test Reliability Estimates

Bayesian Estimation

CTT-Coefficients:

Both the prior and posterior distribution of the covariance matrix
are an inverse Wishart distribution when the data follow a
multivariate normal distribution (Murphy, 2007)

We sample numerous times (e.g., 2,000) from the inverse Wishart
with hyperparameters based on the data

We obtain a posterior sample of covariance matrices that are an
adequate representation of the posterior distribution

We compute posterior samples of the CTT-coefficients using
equations (4), (5), (7) from the posterior sample of covariance
matrices
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Part II: The Choice of Estimation Bayesian Single-Test Reliability Estimates

Bayesian Estimation

FA-coefficient:

Borrow the prior distributions for the single-factor model
parameters from Bayesian structural equation modeling (see Lee,
2007):

A normal distribution for the factor loadings and the factor scores
An inverse gamma distribution for the residuals
An inverse Wishart distribution for the covariance matrix of the
latent variables

We implement Markov chain Monte Carlo (MCMC) sampling to
obtain posterior samples of loadings and residuals

We compute the posterior samples of ωu from the posterior
samples of loadings and residuals
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Part II: The Choice of Estimation Bayesian Single-Test Reliability Estimates

Simulation Study

How do the Bayesian reliability coefficients perform statistically?
→ Compare them to classical point estimates and bootstrapped
confidence intervals in a simulation study with multiple conditions:

Data were generated from a single-factor model

Number of items: 5 and 20

Sample size: 50, 100, and 500

Average inter-item correlation: 0, .3, and .7

The results included:

Root mean square error of point estimates

Coverage of 95% uncertainty intervals

Probability of overestimation
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Part II: The Choice of Estimation Bayesian Single-Test Reliability Estimates

Simulation Study

k = 5
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Figure 5. Simulation results for the medium-correlation condition with k = 5 items. The endpoints of the bars are the
mean 95% uncertainty interval limits. The 25%- and 75%-quartiles are indicated with vertical line segments.
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Part II: The Choice of Estimation Bayesian Single-Test Reliability Estimates

Simulation Study

Results summary:

The credible intervals for coefficients α, λ2, and ωu performed
satisfactory,

The Bayesian point estimation was slightly worse than the classical
(frequentist) in small samples

The results for the classical bootstrap confidence intervals and the
Bayesian credible intervals generally agreed

Conclusions:

Use uncertainty estimates to accompany point estimates of α, λ2,
and ωu, preferably the credible intervals we implemented

The use of intervals is even more important when the sample size
is small
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Part II: The Choice of Estimation Bayesian Multidimensional Reliability

Pfadt, J. M., van den Bergh, D., & Moshagen, M. (2021). The
reliability of multidimensional scales: A comparison of confidence
intervals and a Bayesian alternative (preprint). PsyArXiv.
https://doi.org/10.31234/osf.io/d3gfs
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Part II: The Choice of Estimation Bayesian Multidimensional Reliability

Introduction

Coefficients ωt for the total reliability and ωh for the g-factor
reliability (see Equations 11 and 12)

The ω-coefficients can be based on a second-order factor model:

relates several primary group factors to the items (facets,
dimensions)
relates a general secondary factor to the group factors (common
attribute)
is nested in the bi-factor model

The second-order factor model loadings are transformed to yield
the bi-factor model loadings for ωt and ωh
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Part II: The Choice of Estimation Bayesian Multidimensional Reliability

Motivation

Credible intervals for coefficients ωt and ωh are not available

Different methods to obtain confidence intervals of ωt and ωh are
scarcely researched

→ Develop Bayesian versions of ωt and ωh

→ Compare multiple confidence intervals
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Part II: The Choice of Estimation Bayesian Multidimensional Reliability

Bayesian Estimation

Similar to coefficient ωu and the single-factor model

Prior distributions for the second-order factor model (see Lee,
2007):

A multivariate normal distribution for the group factor loadings,
and the factor scores
A normal distribution for the general factor loadings
An inverse gamma distribution for the manifest and the latent
residuals
An inverse Wishart distribution for the covariance matrix of the
latent variables

We use MCMC sampling

We compute the posterior samples of ωt and ωh from the
posterior samples of loadings and residuals
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Part II: The Choice of Estimation Bayesian Multidimensional Reliability

Simulation Study

How do the Bayesian versions of ωt and ωh perform statistically? How do different
confidence intervals perform?

Confidence intervals:

EFA based non-parametric bootstrap intervals: Standard error (SE), standard
error bias corrected (SEBias), standard error log transformed (SELog ), percentile
(Perc), bias corrected and accelerated (BCA)

CFA based Wald-type interval (Wald)

Conditions:

Data were generated from a second-order factor model

Level of reliability: Low (.5) and high (.8)

Number of items (model size): 9 (three group factors) and 30 (five group
factors)

Results included:

Root mean square error of point estimates

Coverage of 95% uncertainty intervals
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Part II: The Choice of Estimation Bayesian Multidimensional Reliability

Simulation Study: Coverage Results
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Figure 7. The coverage of the confidence intervals (SE - Wald), and the credible interval (Bayes) for k = 30 items and
five group factors. The closer the dots are at the 95% line the better. Low reliability equaled ωt = .5; high reliability
equaled ωt = .8.
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Part II: The Choice of Estimation Bayesian Multidimensional Reliability

Simulation Study

Results summary:

Out of the confidence intervals, the SE, SELog , and Wald interval
performed best

The credible intervals performed satisfactory in most conditions

With small samples and low reliability none of the intervals
performed well

Conclusions:

Use intervals for ωt and ωh, preferably credible intervals

Be cautious with multidimensional reliability estimation when
sample size is small and the reliability low

Out of the confidence intervals, we recommend the Wald-type
interval if the CFA converges
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Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Bridging the Gap between Theory and Practice

We implemented all methods in the R-package Bayesrel

The R framework addresses researchers familiar with programming

For others, the use of the Bayesian reliability estimates depends on
an implementation in GUI-based software, such as SPSS

→ JASP:

Statistical click-and-response program much like SPSS but free of
charge
Developed by a team around EJ Wagenmakers at the University of
Amsterdam
Offers many popular analyses in a classical and a Bayesian way
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Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Pfadt, J. M., van den Bergh, D., Sijtsma, K., & Wagenmakers, E.-J.
(2021). A tutorial on Bayesian single-test reliability analysis with JASP
(preprint). PsyArXiv. https://doi.org/10.31234/osf.io/j6z8h
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Part II: The Choice of Estimation Tutorial: Bayesian Reliability Estimates

Tutorial

Data set from Nicolai and Moshagen (2018) containing a
self-rating scale for manic symptoms (ASRM) from 78 participants

Complete Bayesian reliability analysis in JASP with coefficients ωu

and α:

Point estimates and credible intervals
Prior-posterior plots
Probability that coefficient is higher than, e.g., .70
If-item-dropped statistics and plots
Assessing convergence
Checking model fit with the posterior predictive check
Missing data handling

→ small demo...
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General Limitations and Conclusions Limitations

Limitations

CTT is a quite rudimentary measurement model, CTT-reliability
might not be what people wish to know (target vs. non-target
influences)

Simulation studies are based on ideal situations (multivariate
normal data, perfectly fitting models), real data is messy

Relatively uninformative priors were used, other priors might yield
different results

Priors were never set on the reliability parameters itself but the
covariance matrix and the factor model parameters
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General Limitations and Conclusions Conclusions

Conclusions

Psychometric models:

Coefficient α is a lower bound to the reliability as defined by CTT

Psychological theory → measurement model → type of reliability → reliability
coefficient

With unidimensional data, the choice of a reliability coefficient is almost
arbitrary

With multidimensional data, the FA-coefficients are recommended

Uncertainty estimation:

Use intervals for reliability estimates!

Credible intervals for reliability coefficients are highly practical and – through
this work – accessible

Some confidence intervals for reliability coefficients perform well and should
accompany classical reliability point estimates
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General Limitations and Conclusions Conclusions

Contributions

Discussion of two recurring criticisms of coefficient α, showing α is a useful
lower bound to reliability defined by CTT

Comparison of multiple popular CTT and FA reliability coefficients using
different data generating models

Investigation of different confidence intervals for popular reliability coefficients

Development of popular CTT and FA reliability estimates for unidimensional
and multidimensional data in the Bayesian framework

Implementation of all developed methods – Bayesian and classical – in the
R-package Bayesrel and in JASP for a wide audience to use
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General Limitations and Conclusions Conclusions

Thank you for your attention!
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